Refinement

Refinement on F^2	$\Delta \rho_{\rm max} = 0.650 \ {\rm e} \ {\rm \AA}^{-3}$
$R[F^2 > 2\sigma(F^2)] = 0.050$	$\Delta \rho_{\rm min} = -0.478 \ {\rm e} \ {\rm \AA}^{-3}$
$wR(F^2) = 0.125$	Extinction correction:
S = 1.222	SHELXL97 (Sheldrick,
5754 reflections	1997)
502 parameters	Extinction coefficient:
H atoms: see below	0.113 (5)
$w = 1/[\sigma^2(F_o^2) + (0.0799P)^2]$	Scattering factors from
where $P = (F_o^2 + 2F_c^2)/3$	International Tables for
$(\Delta/\sigma)_{ m max} < 0.001$	Crystallography (Vol. C)

Fable	1. Se	lected	torsion	angles	(°)	
--------------	-------	--------	---------	--------	-----	--

C11—N1—C2—C3	39.2 (3)
N1-C2-C3-C4	50.4 (3)
C2-C3-C4-N5	-69.9(2)
C3—C4—N5—C10	-5.7 (3)
C4—N5—C10—C11	53.7 (3)
N5-C10-C11-N1	-2.2 (3)
C2-N1-C11-C10	-69.4 (3)
C11A—N1A—C2A—C3A	-41.9 (3)
N1A—C2A—C3A—C4A	-49.3 (2)
C2A—C3A—C4A—N5A	68.9 (2)
C3A—C4A—N5A—C10A	8.7 (3)
C4A-N5A-C10A-C11A	-54.1 (3)
N5A—C10A—C11A—N1A	-1.5 (3)
C2A = N1A = C11A = C10A	75.8 (3)

The H atoms attached to N5 and N5A were located from the difference map and were refined with isotropic displacement parameters in the subsequent cycles of refinement. All the other H atoms were fixed using geometrical considerations.

Data collection: R-AXIS image plate software. Cell refinement: R-AXIS image plate software. Data reduction: *TEXSAN* (Molecular Structure Corporation, 1995). Program(s) used to solve structure: *SIR*97 (Altomare *et al.*, 1997). Program(s) used to refine structure: *SHELXL*97 (Sheldrick, 1997). Molecular graphics: *ZORTEP* (Zsolnai, 1997). Software used to prepare material for publication: *SHELXL*97. Geometrical calculations: *PARST*96 (Nardelli, 1983).

PL thanks Dr M. A. Subramanian, duPont Central Research and Development, Wilmington, DE 19880-0328, USA, for X-ray data collection.

Supplementary data for this paper are available from the IUCr electronic archives (Reference: VJ1098). Services for accessing these data are described at the back of the journal.

References

- Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.
- Altomare, A., Cascarano, G., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Burla, M. C., Polidori, G., Camalli, M. & Spagna, R. (1997). SIR97. A Package for Crystal Structure Solution by Direct Methods and Refinement. Istituto di Ricerca per lo Sviluppo di Metodologie Cristallografiche, CNR, Bari, Italy.
- Camerman, A. & Camerman, N. (1972). J. Am. Chem. Soc. 94, 268– 272.

Hendrickson, J. B. (1967). J. Am. Chem. Soc. 89, 7043-7046.

Molecular Structure Corporation (1995). TEXSAN. Single Crystal Structure Analysis Software. Version 1.7-2. MSC, 3200 Research Forest Drive, The Woodlands, TX 77381, USA.

Nardelli, M. (1983). Comput. Chem. 7, 95-98.

Xu, J., Jin, S., Zhang, Z. & Mak, T. C. W. (1998). Acta Cryst. C54, 666-668.

Zsolnai, L. (1997). ZORTEP. Molecular Graphics Program. University of Heidelberg, Germany.

Acta Cryst. (1999). C55, 1357-1360

2,11-Dithia[3.3.1]paracyclophane, (I), and 2,11-dithia[3.3.2]paracyclophane, (II)†

Kuniaki Itoh,* Kazuyoshi Nishikawa, Masao Hashimoto and Hiroaki Yamada

Department of Chemistry, Faculty of Science, Kobe University, Nada-ku, Kobe 657-8501, Japan. E-mail: kuitoh@gradis.scitec.kobe-u.ac.jp

(Received 7 December 1998; accepted 23 March 1999)

Abstract

In the title compounds $[C_{23}H_{22}S_2, (I), \text{ and } C_{24}H_{24}S_2, (II)]$, the thio-bridging chains on either side of the benzene ring (A) are oriented *anti* to each other. Ring A is located nearly perpendicular to the other benzene rings (B and B') to give a short contact between an H atom of ring A and the center of ring B (B'). The thio-bridging moieties in (I) and (II) seem to be almost strain-free.

Comment

In relation to the cyclophanes, thio analogs are interesting substances and the stereochemistry of a few thiocyclophanes has been studied by means of X-ray crystallography (Lai, 1981; Keehn, 1983; Mitchell, 1983; Chan *et al.*, 1986). The title compounds, (I) and (II), are expected to show ring flexibility similar to that

[†] Alternative names: (I) is 8,15-dithiatetracyclo[$15.2.2.2^{3,6}.2^{10,13}$]-pentacosa-3,5,10,12,17,19(1),20,22,24-nonaene and (II) is 9,16-dithiatetracyclo[$16.2.2.2^{4,7}.2^{11,14}$]hexacosa-4,6,11,13,18,20(1),21,23,25-nonaene.

of the previously studied [14]paracyclophane. One of the authors (HY) has studied the kinetics of the thermal motion in the benzene rings of (I) and (II) under high pressure using ¹H NMR (Imashiro *et al.*, 1976, 1981). The ¹H NMR spectra showed unusual high-field shifts (6.30 p.p.m.) for the H atoms [H3 and H4 of (I) and H5 and H6 of (II)] in benzene ring A (see Figs. 1 and 2). In order to investigate the origin of these shifts in the ¹H NMR spectra, we have determined the crystal structures of (I) and (II).

Fig. 1. Molecular structure of (I) showing 50% probability displacement ellipsoids.

Fig. 2. Molecular structure of (II) showing 50% probability displacement ellipsoids.

In both compounds, the thio-bridging chains $-CH_2S$ are oriented *anti* to each other across the plane of the benzene ring A. The angle between the B/B' pair of benzene rings is 78.7 (2) in (I) and 92.5 (3)° in (II). In (I), the C3—H3 bond axis of the benzene ring A is directed to the center of the benzene ring B' with an H3…B' distance of 2.63 (2) Å and an approach angle of 85.5 (3)°. In (II), the C6—H5 bond axis of the benzene ring A is directed to the center of benzene ring B with an H5…B distance of 2.72 (2) Å and an approach angle of 79.3 (3)°. The H3…C21 distance of 2.75 (1) Å in (I), and the H5…C15 distance of 2.69 (1) Å in (II) are nearly equal to the sum of van der Waals radii of aromatic H and C atoms (2.77 Å; Bondi, 1964). Molecules (I) and (II) have a chemical twofold axis which exchanges the positions of B and B' rings. It is evident that the diamagnetic effect of the ring current in B and B' contributes to the unusual chemical shifts of H3 and H4 in (I) [H5 and H6 in (II)] in solution.

Observed S—C bond lengths [1.806(3)-1.826(3) Å]and S—C—C bond angles $[112.7(2)-115.8(2)^{\circ}]$ for (I) and (II) are closer to the values reported for strainfree 2,11,20,29-tetrathia[3.3.3] parabenzophenone [S— C 1.812(4) Å and S—C—C 115.2(2)^{\circ} (Pfisterer & Ziegler, 1983)] than for those for the strained 1,9-dithia-[2.2] paracyclophane [S—C 1.774(4) and 1.860(8) Å, S—C—C 120.0(3) and 120.8(3)^{\circ} (Itoh *et al.*, 1996)]. This observation indicates that the thio-bridging moieties in (I) and (II) are almost strain-free.

Experimental

Compound (I) was prepared from 4,4'-bis(chloromethyl)diphenylmethane and *p*-xylene- α,α' -dithiol in benzene by a previously described method (Imashiro *et al.*, 1976). Recrystallization of (I) from dimethyl ether/*n*-hexane gave colorless prisms (m.p. 492.3–493.2 K). Compound (II) was prepared from 4,4'-bis(chloroethyl)diphenylmethane and *p*-xylene- α,α' -dithiol in benzene. The product was isolated by column chromatography over silica gel using *n*-hexane/ethyl acetate (5:1) as eluate. Recrystallization of (II) from dimethylether/*n*-hexane gave pure compound (II) as colorless prisms (m.p. 435.7–436.2 K). The crystals of (I) and (II) used in the study were obtained by slow diffusion of hexane into dichloromethane solutions.

Compound (I)

Crystal data

 $C_{23}H_{22}S_2$ $M_r = 362.55$ Monoclinic $P2_1/n$ a = 12.565 (2) Å b = 10.784 (1) Å c = 14.512 (1) Å $\beta = 105.716 (8)^{\circ}$ $V = 1892.8 (3) \text{ Å}^3$ Z = 4 $D_x = 1.272 \text{ Mg m}^{-3}$ $D_m = 1.23 \text{ Mg m}^{-3}$

Mo $K\alpha$ radiation $\lambda = 0.7107$ Å Cell parameters from 25 reflections $\theta = 13.9-15.0^{\circ}$ $\mu = 0.284$ mm⁻¹ T = 296.2 K Prismatic $0.55 \times 0.50 \times 0.35$ mm Colorless

 $D_m = 1.23$ Mg m D_m measured by flotation in aqueous NaI solution

Data collection				Absorption con	rection:	$\theta_{\rm m}$
Rigaku AFC-51	diffractom-	2880 reflectio	ns with	ψ scan (Nort	h <i>et al</i> .,	h
eter		$I > \sigma(I)$		1968)		<i>k</i> =
ω -2 θ scans		$R_{\rm int} = 0.017$		$T_{\rm min} = 0.478,$	$T_{\rm max} = 0.698$	<i>l</i> =
Absorption corr	rection:	$\theta_{\rm max} = 27.49^{\circ}$		2966 measured	reflections	3 :
<i>ib</i> scan (Nort	h et al.	$h = 0 \rightarrow 16$		2863 independe	ent reflections	
1968)		$k = 0 \longrightarrow 14$				
T = 0.873	T = 0.905	$l = -18 \rightarrow 19$	2			
4772 measured	reflections	$i = -10 \rightarrow 10$ 3 standard ref	ections	Refinement		
4772 incasured	nt reflections		flootions	5.0	_	
+574 independe	int reflections	every 150 f		Refinement on	F	$(\Delta$
		mensity de	cay: none	R = 0.042		Δ_{I}
				wR = 0.044		Δ_{I}
Refinement				S = 1.484		Ex
Refinement on	F	$(\Lambda/\sigma) = 0$	0038	2182 reflections	i	
R = 0.061	L	$(\Delta/0)_{max} = 0.26$	$a^{\lambda-3}$	236 parameters		Ex
m P = 0.001		$\Delta p_{\rm max} = 0.20$	0^{-3}	H-atom parame	ters not	
S = 1.241		$\Delta \rho_{\rm min} = -0.3$	ue A	refined		Sc
3 = 1.341		Zashariaaan	(1067)	$w = 1/[\sigma^2(F_o)]$		
2000 Tenections		Zacharlasen	(1907)	+ 0.00029	$ F_o ^2$]	
22/ parameters		Extinction coe	mcient:			
n-atom parame	ters not	0.055 (3)	c			
renned $1/(-2/E)$		Scattering fact	ors from	Table 2. Sele	cted geometri	ic pa
$w = 1/[\sigma(r_0)]$	E 121	Internation	il lables for	\$1_CI	1 810 (3)	,
+ 0.00042	$F_o[-]$	Crystallogr	aphy (Vol. C)	S1-C24	1.819(3) 1.822(3)	C1
				\$2—C8	1.821 (3)	C14
Table 1 Sele	ected geometr	ic narameters	(\mathring{A}°) for (1)	S2—C9	1.816 (3)	C10
	cica geomen	re parameters (11,)]07 (1)	C1—C2	1.505 (3)	C2
SI-CI	1.806 (3)	CS-C8	1.511 (3)	C5-C8 C6-C7	1.509 (3)	C2
S2-C8	1.825 (3)	C13C16	1.505 (4)		1.302 (4)	~
S2—C9	1.812 (3)	C16C17	1.511 (4)	$C_{1} = S_{1} = C_{24}$	103.7(1) 102.3(1)	C9

		65 60	
S1-C23	1.826 (3)	C9-C10	1.505 (4)
S2-C8	1.825 (3)	C13C16	1.509 (4)
S2-C9	1.812 (3)	C16C17	1.511 (4)
C1-C2	1.504 (3)	C20C23	1.502 (4)
C1_S1_C23	102.8 (2)	C9-C10-C15	121.3 (3)
C8-S2-C9	102.9 (2)	C12-C13-C16	120.0 (2)
S1-C1-C2	115.8 (2)	C14—C13—C16	122.9 (3)
C1-C2-C3	121.2 (2)	C13-C16-C17	111.7 (2)
C1-C2-C7	121.2 (2)	C16-C17-C18	121.7 (3)
C4C5C8	121.5 (2)	C16-C17-C22	121.1 (2)
C6-C5-C8	120.6 (2)	C19-C20-C23	121.7 (3)
S2-C8-C5	115.6 (2)	C21C20C23	119.9 (3)
S2-C9-C10	115.7 (2)	\$1-C23-C20	112.7 (2)
C9-C10-C11	121.1 (3)		

Compound (II)

Crystal data

Cu $K\alpha$ radiation
$\lambda = 1.5418 \text{ Å}$
Cell parameters from
reflections
$\theta = 13.3 - 14.8^{\circ}$
$\mu = 2.401 \text{ mm}^{-1}$
T = 298.2 K
Prismatic
$0.40\times0.30\times0.15$
Colorless

Rigaku AFC-5R diffractom-	2
eter	
ω -2 θ scans	F

m 23 mm

182 reflections with $l > \sigma(l)$ $R_{int} = 0.015$

Absorption correction: ψ scan (North <i>et al.</i> , 1968) $T_{min} = 0.478, T_{max} = 0.698$ 2966 measured reflections 2863 independent reflections	$\theta_{max} = 60.08^{\circ}$ $h = 0 \rightarrow 16$ $k = 0 \rightarrow 7$ $l = -21 \rightarrow 20$ 3 standard reflections every 150 reflections intensity decay: 4.1%
Refinement	

ment on F	$(\Delta/\sigma)_{\rm max} = 0.0005$
042	$\Delta \rho_{\rm max} = 0.19 \ {\rm e} \ {\rm \AA}^{-3}$
0.044	$\Delta \rho_{\rm min} = -0.21 \ {\rm e} \ {\rm \AA}^{-3}$
184	Extinction correction:
eflections	Zachariasen (1967)
rameters	Extinction coefficient:
n parameters not	0.059 (4)
ed	Scattering factors from
$[\sigma^2(F_o)]$	International Tables for
$0.00029 F_o ^2$]	Crystallography (Vol. C)

arameters (Å, °) for (II)

S1C1 S1C24 S2C8 S2C9 C1C2	1.819 (3) 1.822 (3) 1.821 (3) 1.816 (3) 1.505 (3)	C9-C10 C13-C16 C14-C15 C16-C17 C21-C24	1.506 (4) 1.510 (4) 1.389 (4) 1.520 (4) 1.497 (4)
C5—C8 C6—C7	1.509 (3) 1.382 (4)	C22—C23	1.387 (4)
C1 - S1 - C24 $C8 - S2 - C9$ $S1 - C1 - C2$ $C1 - C2 - C3$ $C1 - C5 - C6$ $C4 - C5 - C8$ $S2 - C8 - C5$ $S2 - C8 - C5$ $S2 - C9 - C10$ $C9 - C10 - C11$	103.7 (1) 102.3 (1) 114.2 (2) 121.4 (3) 120.7 (2) 118.4 (2) 121.3 (2) 120.3 (2) 114.2 (2) 115.3 (2) 121.1 (3)	C9-C10-C15 C12-C13-C16 C13-C16-C17 C13-C16-C17 C16-C17-C18 C17-C18-C19 C17-C18-C23 C20-C21-C24 C22-C21-C24 S1-C24-C21	121.0 (3) 119.2 (3) 122.7 (2) 116.3 (3) 116.2 (2) 120.9 (3) 121.9 (3) 121.2 (3) 121.1 (3) 114.7 (2)

Table 3. Comparison of S—C bond lengths (Å), and C— S—C and S—C—C bond angles (°) observed for (1), (11), (III) and (IV)

	S—C	C—S—C	S—C—C
(I)	1.826 (3), 1.825 (3)	102.9 (2), 102.8 (2)	115.8 (2), 115.7 (2)
	1.812 (3), 1.806 (3)		115.6 (2), 112.7 (2)
(II)	1.822 (3), 1.821 (3)	103.7 (1), 102.3 (1)	115.3 (2), 114.7 (2)
	1.819 (3), 1.816 (3)		114.2 (2), 114.2 (2)
(III)	1.812 (4)	101.2 (2)	115.2 (2)
(IV)	1.860 (8), 1.774 (4)	103.4 (3)	120.8 (3), 120.0 (3)

H atoms were included in the cycles of least-squares calculations, where the coordinates of the H atoms were fixed to those obtained in the penultimate calculation.

For both compounds, data collection: MSC/AFC Diffractometer Control Software (Molecular Structure Corporation, 1988); cell refinement: MSC/AFC Diffractometer Control Software; data reduction: TEXSAN (Molecular Structure Corporation, 1992). Program(s) used to solve structures: SIR88 (Burla et al., 1989) for (I); DIRDIF92 (PATTY; Beurskens et al., 1992) for (II). For both compounds, program(s) used to refine structures: TEXSAN; software used to prepare material for publication: TEXSAN.

Supplementary data for this paper are available from the IUCr electronic archives (Reference: OB1006). Services for accessing these data are described at the back of the journal.

References

- Beurskens, P. T., Admiraal, G., Beurskens, G., Bosman, W. P., Garcia-Granda, S., Gould, R. O., Smits, J. M. M. & Smykalla, C. (1992). *The DIRDIF Program System.* Technical Report. Crystallography Laboratory, University of Nijmegen, The Netherlands.
- Bondi, A. (1964). J. Phys. Chem. 68, 441-451.
- Burla, M. C., Camalli, M., Cascarano, G., Giacovazzo, C., Polidori, G., Spagna, R. & Viterbo, D. (1989). J. Appl. Cryst. 22, 389-393.
- Chan, T.-L., Poon, C.-D. & Mak, T. C. W. (1986). Acta Cryst. C42, 897–900.
- Imashiro, F., Oda, M., Iida, T., Yoshida, Z. & Tabushi, I. (1976). Tetrahedron Lett. 17, pp. 371-374.
- Imashiro, F., Saika, A., Yamada, H. & Sera, A. (1981). Chem. Lett. pp. 247-250.
- Itoh, T., Gotoh, K., Ishikawa, N., Hamaguchi, T. & Kubo, M. (1996). J. Org. Chem. 61, 1867–1869.
- Keehn, P. M. (1983). Cyclophanes, edited by P. M. Keehn & S. M. Rosenfeld, Vol. I, pp. 69–238. New York: Academic Press.
- Lai, Y. H. (1981). Heterocycles, 16, 1739-1754.
- Mitchell, R. H. (1983). Cyclophanes, edited by P. M. Keehn, & S. M. Rosenfeld, Vol. I, pp. 240–309. New York: Academic Press.
- Molecular Structure Corporation (1988). MSC/AFC Diffractometer Control Software. MSC, 3200 Research Forest Drive, The Woodlands, TX 77381, USA.
- Molecular Structure Corporation (1992). TEXSAN. Single Crystal Structure Analysis Software. MSC, 3200 Research Forest Drive, The Woodlands, TX 77381, USA.
- North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351–359.
- Pfisterer, H. & Ziegler, M. L. (1983). Acta Cryst. C39, 372-375. Zachariasen, W. H. (1967). Acta Cryst. 23, 558-564.

Acta Cryst. (1999). C55, 1360-1361

trans-(6-Bromo-2-cyclohexen-1-yl)pyridinium bromide

XINGHUA HAN, RONALD J. BAKER AND JOHN MASNOVI

Department of Chemistry, Cleveland State University, Cleveland, OH 44115, USA. E-mail: j.masnovi@popmail. csuohio.edu

(Received 6 January 1999; accepted 30 March 1999)

Abstract

The title compound, $C_{11}H_{13}BrN^+ \cdot Br^-$, was prepared by bromination of 1,3-cyclohexadiene in the presence of stoichiometric amounts of bromine and pyridine. Bromine and pyridine are found to add by *anti* 1,2addition, with pyridine occupying the allylic position. The bromide resides relatively close [3.490 (1) Å] to the covalent bromine, whereas it is 4.232 (5) Å from the nearest nitrogen cation.

Comment

Several reports concerning the structure of the products of bromination of 1,3-cyclohexadiene are in disagreement (Hassel & Lunde, 1950; Heasley *et al.*, 1973; Khedekar, 1997; McMillen & Grutzner, 1994; Lund, 1950). The first-formed dibromocyclohexenes are unstable liquids which undergo rearrangements at room temperature. Therefore, the bromination was conducted in the presence of pyridine at low temperature, and afforded the title compound, (I). Its structure was determined in order to establish the stereochemistry of addition of nucleophiles during the initial steps of bromination of 1,3-dienes. Because the nucleophile (pyridine) differs from the electrophile (bromine), the structure establishes the regiochemistry of the addition as well.

The structure shown in Fig. 1 demonstrates that the product is formed by *anti* 1,2-addition of the elements of bromine and pyridine across one of the double bonds of the diene. The pyridine attaches to the allylic-C atom. The pyridinium moiety is essentially planar and resembles that found in other *N*-alkylpyridinium derivatives (van Havere *et al.*, 1982), with relatively short (about 1.36 Å) carbon–carbon bonds and bond angles all near 120°. Bond distances and angles in the cyclohexene moiety are close to those in cyclohexene (Chiang & Bauer, 1969). For example, C1, C2, C3 and C4 are coplanar. Interior bond angles about the C=C double bond average 123.1° (123.5° in cyclohexene),

Fig. 1. ORTEPII (Johnson, 1976) representation showing the atomnumbering scheme with displacement ellipsoids at the 30% probability level.